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We propose two-layer architecture of associative memory oscillatory network with directional interlayer
connectivity. The network is capable to store information in the form of phase-locked �in-phase and antiphase�
oscillatory patterns. The first �input� layer takes an input pattern to be recognized and their units are unidirec-
tionally connected with all units of the second �control� layer. The connection strengths are weighted using the
Hebbian rule. The output �retrieved� patterns appear as forced-phase locked states of the control layer. The
conditions are found and analytically expressed for pattern retrieval in response on incoming stimulus. It is
shown that the system is capable to recover patterns with a certain level of distortions or noises in their profiles.
The architecture is implemented with the Kuramoto phase model and using synaptically coupled neural oscil-
lators with spikes. It is found that the spiking model is capable to retrieve patterns using the spiking phase that
translates memorized patterns into the spiking phase shifts at different time scales.
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I. INTRODUCTION

The studies of principles of information representation
and its processing in the brain still remain in the cutting edge
field of modern neuroscience. It is believed that information
is processed by evolving self-sustained activity patterns
formed by neuronal networks due to local oscillatory activity
of neurons and complex architecture of synaptic connections
�1�. Associative memory phenomenon represents one of the
most spectacular examples illustrating how the networks can
effectively memorize the information and retrieve it if an
appropriate stimulus has been given �2–11�.

Modeling Hopfield networks with binary states and the
Hebbian rule for the connectivity has provided a fundamen-
tal insight in the problem of computation with patterns �2�.
Such networks can store a set of binary patterns associated
with local minima of “energy” function. For certain condi-
tions the required pattern can be retrieved or recognized if an
initial stimulus hits the attraction basin of the corresponding
energy minimum. The estimated storage capacity �the num-
ber of stored patterns per unit� of an n-unit system is propor-
tional to 1/ log n. Based on the computational principles of
Hopfield networks oscillatory models for associative
memory has attracted great attention and interest in recent
years �3–9�. Such interest has also been stimulated by neu-
rophysiological findings stating that the oscillatory activity
can provide the background for computational functions of
the brain. Take, for instance, theta-rhythm oscillations in hip-
pocampus, 40-Hz thalamocortical activity and information
binding, 10-Hz olivocerebellar oscillations and oscillatory
patterns for motor control �1�. In oscillatory network models
the information can be encoded using oscillation phase or
spiking phase, i.e., the time moments when action potentials
or spikes are generated. Such networks are capable to “trans-

late” a sensory input or a physiological function into dy-
namic patterns of oscillatory activity. Take, for example,
phase cluster formation for visual scene segmentation task in
network with global inhibitor �12�, oscillatory patterns
implementing a motor command in network with oscillatory
feedback �13�, and the above mentioned associative memory
models.

One of the simplest mathematical models for oscillatory
associative memory is based on Kuramoto’s network com-
prising a set of weakly coupled nonlinear oscillators �14�.
The dynamics of the oscillators can be reduced to the analy-
sis of phase equations

d�i

dt
= �

j=1

N

sij sin�� j − �i� �1�

with coupling matrix

sij =
1

N
�
k=1

K

�i
k� j

k �2�

implementing the Hebbian rule. The set of K vectors �k en-
codes binary information patterns, so that � j

k takes either +1
or −1 values. Then, the oscillations occur with either 0 �in-
phase state� or � �antiphase state� phase shifts between the
network units. System �1� is a gradient system, hence its
attractors are steady states associated with minima of corre-
sponding energy function. It has been shown that the error-
free information retrieval is limited by K=2 memorized pat-
terns �6�. The modification of Eq. �1� generalizing the
coupling function has been recently proposed extending the
capacity up to the Hopfield limits �10,11�. It locates the ter-
minal patterns exactly at the in-phase and antiphase states
and improves the error-free capacity up to 2�2 / log n �� is the
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amplitude of the second harmonic of the coupling term ex-
pansion�. However, the solutions different from the memo-
rized pattern can become stable in the case of increasing �.

In a more general view Kuramoto-type oscillatory net-
works representing a fundamental mathematical tool for un-
derstanding principles of associative memory have some dif-
ficulties to be directly related to neuronal systems. The
networks are typically composed using a bidirectional cou-
pling term so that units influence each other. However, syn-
aptic architecture of neuronal connections is typically unidi-
rectional comprising the presynaptic �input� and postsynaptic
�output� cells. The electrical gap junctions �electrical syn-
apses� being an appropriate treatment for the bidirectional
coupling term typically have local �nearest-neighbor� archi-
tecture. Another note is that the phase description of the os-
cillators valid only for weak couplings yields the limitation
on the real time scale of the retrieval processes to be very
slow �14�.

The geometry or architecture of model �1� is referred to as
homogeneous in the sense that its input and output coincide.
The input pattern is taken as initial conditions and the output
information comes as the terminal state. In this paper we
propose a two-layer feedforward �heterogeneous� architec-
ture �Fig. 1� of the oscillatory associative memory network.
It separates input and output information flows similarly to
layered perceptual networks �15,16�. The units of the input
layer are unidirectionally connected with the control layer
with a Hebbian coupling matrix. We show that output pat-
terns in response to appropriate stimulus appear as forced
phase-locked states with perfect in-phase or antiphase values.
For certain conditions the output state can perfectly repro-
duce or retrieve one of the memorized patterns. The storage
capacity for error-free retrieval stays limited with K=2
memorized states as in system �1� for an arbitrary �unbiased�
set of patterns. However, if the memorized patterns satisfy
some conditions restricting a pattern basis or “alphabet,”
then the capacity can be significantly enhanced. Furthermore,
we show how the two-layer associative memory can be
implemented using neuronal oscillators with true spiking dy-
namics and excitatory or inhibitory synaptic connections.
Such a network represents information using spiking times
and is capable to operate at different time scales.

The paper is organized as follows. In Sec. II we give a
general model description and analytically obtain the re-

trieval conditions using Kuramoto phase oscillators. In Sec.
III we show how forced phase-locking spikes in the two-
layer network composed of neural oscillators �17� can imple-
ment the associative memory using the excitatory and inhibi-
tory synaptic connections and spike phase encoding. The
Conclusion, Sec. IV, contains a brief discussion of the
results.

II. TWO-LAYER PHASE OSCILLATORY NETWORK
MODEL

The dynamics of the two-layer oscillatory network shown
in Fig. 1 is given by the following phase equations:

d�i

dt
= �

j=1

N

sij sin�� j
0 − �i� ,

cos � j
0 = � j

0 = const,

sin � j
0 = 0. �3�

Variables � j describe the evolution of the control layer units
and � j

0 are constant input phases defined by the input infor-
mation pattern � j

0 fixed with +1 and −1 values. The coupling
coefficient sij is taken according to the Hebbian rule �2�.
Note that the oscillators in the second layer are uncoupled
with each other and evolve under a constant input stimulus.

A. Retrieval dynamics

Let us consider the retrieval dynamics of the two-layer
model �3�. Since the input phases � j

0 are fixed with 0 or �
values the fixed points of the first equation in Eq. �3� are
given by

sin �i�
j=1

N

sij� j
0 = 0. �4�

Let us assume that the coefficients � j=1
N sij� j

0 are not equal to
zero.1 Then, the fixed points of the control layer are located
exactly at 0 or � states. Similarly to Eq. �1�, system �3� is a
gradient system and its stable fixed points correspond to the
minima of the energy �Lyapunov� function. Since the oscil-
lators in the control layer are independent for each unit the
function is expressed as

���i� = − �
j=1

N

sij cos�� j
0 − �i� , �5�

�i = −
d���i�

d�i
.

In other words the Jacobian defining the pattern stability of
the fixed points in N-dimensional space has only diagonal
terms.

1Zero values of the coefficients correspond to a neutral stability
mode. It can be excluded by a small structural perturbation of the
right-hand side function �6�.

input layer
control
layer

input
pattern

retrieved
pattern

feedback

FIG. 1. A feedforward �heterogeneous� architecture of the two-
layer oscillatory network for associative memory.

VICTOR KAZANTSEV AND ALEXEY PIMASHKIN PHYSICAL REVIEW E 76, 031912 �2007�

031912-2



Let us now analyze the shape of energy functions when an
unbiased set �k �k=1,2 , . . . ,K� of information patterns is
memorized using the Hebbian rule �2�. It follows from Eq.
�5� that

���i� = −
1

N
�
j=1

N

�
k=1

K

�i
k� j

k cos�� j
0 − �i�

= −
1

N
�
j=1

N

�
k=1

K

�i
k� j

k�cos � j
0 cos �i + sin � j

0 sin �i� .

Using Eq. �3� we obtain

���i� = − cos �i�
k=1

K

�i
k 1

N�
j=1

N

� j
k� j

0. �6�

Thus the energy function for each unit has only one mini-
mum corresponding to the stability of either 0 or � states
depending on the sign of the sum in Eq. �6�. Note that the
quantity

mk
0 =

1

2
� 1

N
�
j=1

N

� j
k� j

0 + 1�
characterizes the overlap between the initial pattern and the
kst pattern from the memorized set. It takes +1 value if the
patterns are absolutely identical and 0 if they are completely
different.

B. Capacity characteristics

Let us now specify that we would like to retrieve one of
the patterns, �r, from the memorized set. Let M be the num-
ber of components of vector �0 with +1 values. Then, for
units from this group Eq. �6� takes the form

���i� = − cos �i�
k=1

K

�i
k 1

N��
j=1

M

� j
k − �

j=M

N

� j
k	

= − cos �i�
k=1

K

�i
k 1

N
�N − 2Pk� ,

where Pk=N�1−mk
0� is the measure of discrepancy between

the kst pattern and the input pattern. Then, the condition for
error-free retrieval of the pattern �r can be written as

N − 2Pr � − �
k=1

k�r

K

�i
r�i

k�N − 2Pk�, ∀ i = 1,2, . . . ,N . �7�

Let the input pattern be close to �r so that Pr=	
N. Fur-
thermore, a sufficient condition for error-free retrieval is es-
timated from inequalities �7� as

N − 2	 � �K − 1�
N − 2�Q − 	�
 , �8�

where Q=min Pk is the minimum discrepancy between the
patterns in the memorized set. It follows from Eq. �8� that the
information capacity of the model �3� is restricted by

K � 1 +
N


N − 2Q

. �9�

For an unbiased set of patterns the capacity stays limited as
in the classical oscillatory network �1� with the K=2 memo-
rized patterns. However, if the set of patterns is selected
according to some basis or “alphabet” with Q→N /2, then
according to Eq. �9� the capacity can be significantly in-
creased. In fact, it is an expression of the general rule for
Hopfield networks that distinguishable patterns should be
quite distant from each other.

Nevertheless, if Eq. �9� is satisfied the system can dis-
criminate close patterns. Let K=2 similar patterns with just
one different pixel at i= i* ��i*

1 =−�i*
2 ,� j

1=� j
2 , j� i� be stored in

the memory. If the input has discrepancy P1= P with the first
pattern and contains the same pixel at i= i* ��i*

0 =−�i*
1 � then its

discrepancy with the second pattern will be P2= P+1. In this
case the inequalities �7� for error-free retrieval of the first
pattern will be written as

N − 2P � − �i*
1 �− �i*

1 ��N − 2�P + 1�� = N − 2P − 2, i = i*,

N − 2P � − �i
1�i

1�N − 2�P + 1�� = − �N − 2P� + 2, i � i*.

They ensure the correct retrieval of the first pattern for P
� �N−1� /2.2 Otherwise, a “mirror image” of the pattern will
appear in the output.

Another feature of the two-layer model �3� is that it can
distinguish mirror images. Let us assume that two mirror
patterns have been memorized. In this case �i

r�i
k�0 and the

inequalities �7� become N�2Pr which ensures the correct
retrieval for small initial discrepancy. This is the result of the
two-layer organization of the network breaking the symme-
try in Eq. �1� relative to the phase difference between the
oscillators in the control layer.

Note that the profile of energy function �6� for model �3�
is defined not only by the memorized pattern set but also
depends on the initial pattern or on the initial overlap. It is
quite different from the homogeneous case of Eqs. �1� where
the memory structure is represented by a certain number of
local minima attracting the initial conditions from their ba-
sins. The energy function �6� has the only one minimum
globally asymptotically stable in the N-dimensional phase
space and its configuration due to the stimulus defines the
memory function. The retrieval dynamics is independent of
the initial conditions in the control layer.

C. Perfect and imperfect retrieval, recovery of distorted
information

It follows from Eq. �6� that the terminal pattern in Eqs. �3�
can be expressed as

2Note that if there is an even number of different pixels between
the patterns the retrieval of them may lead to a neutral stability
mode for some set of input patterns. Such input patterns cannot be
discriminated in the model.

FORCED PHASE-LOCKED STATES AND INFORMATION… PHYSICAL REVIEW E 76, 031912 �2007�

031912-3



�i
out = 2���

k=1

K

�i
k�2mk

0 − 1�� − 1,

mk
out =

1

2
� 1

N
�
i=1

N

�i
out�i

k + 1� , �10�

where mk
out is the overlap between the retrieved pattern and

the kst pattern from the memory, � is the Heaviside function.
Let us consider a set of patterns loaded into the network

using Eq. �2�. We arrange the units in a two-dimensional
��N�N� square lattice and take the pattern set as binary
images of digits �0, 1, 2,… �Fig. 2� �9�. To illustrate our
theoretical predictions we focus on the concrete pattern “al-

phabet” characterized by the interpattern overlaps that is a
principle characteristic for the retrieval performance. The in-
put patterns are taken distorted with noise according to the
formula

�i
0 = 2���i

k + D�i� − 1, �11�

where �i are uncorrelated random values uniformly distrib-
uted within the interval �−1,1�. Figure 3�a� illustrates output
overlap �10� vs initial overlap for the set of K=3 patterns
satisfying condition �9�. It appears that all three patterns can
be perfectly retrieved �or recovered� if the initial stimulus
has less than about 10% distortions with the desired one. The
example of the recovered pattern 2 is shown in Fig. 3�b�.

If condition �9� is not satisfied, oscillatory model �3� ex-
hibits a certain level of distortions in the profile of the output
pattern. In this case it is still capable to recognize or classify
the incoming information by minimizing the discrepancy �or
maximizing the overlap� between the retrieved pattern and
the one from the memorized set. To illustrate how the re-
trieval process depends on the initial distortion level we plot
in Fig. 4�a� the output overlap vs parameter D explicitly for
K=5 memorized patterns. It appears that different patterns
from the memorized set are processed with different quality.
For example, the first pattern �digit 0� is perfectly retrieved
for sufficiently small initial distortions. Note that the output
overlap for some of them increases with increasing initial

FIG. 2. A set of information patterns in the form of 1010
binary images of digits memorized in the oscillatory network.
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FIG. 3. �a�. Retrieved pattern overlaps vs initial overlaps for the

case of perfect retrieval with K=3 patterns memorized, Q=0.25N in
Eq. �9�. Overlap values are averaged among 106 trials of input
patterns distorted according to formula �11�. �b� Retrieving the digit
2 from a distorted initial stimulus. White and black colors corre-
spond to in-phase and antiphase states, respectively.
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FIG. 4. Imperfect retrieval for K=5 memorized digits. �a� The
dependence of the averaged overlaps on noise intensity. Images are
retrieved with different quality. Some of them can be improved by
the initial distortions. �b� Imperfect retrieval of the digit 2. White
and black colors correspond to in-phase and antiphase states,
respectively.
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distortions indicating that perturbations can improve the re-
trieving dynamics. In spite of the imperfections the cores of
the output patterns can be recognized as one of the memo-
rized images �Fig. 4�b��.

We also note that the directional architecture of the model
�3� can be added with appropriate feedback to improve the
retrieving quality. Using such feedback the terminal pattern
can be mapped back to the first layer and can be recurrently
taken as the input pattern. The iterations may be stopped
when the overlap reaches its maximal value. For example, in
the case of three images memorized �Fig. 3� one additional
iteration of the pattern would be sufficient for perfect re-
trieval �Fig. 3�a��.

III. SPIKING OSCILLATORY NETWORK

The principle dynamical mechanism leading to the asso-
ciative memory function in the oscillatory network �3� is the
interlayer phase locking due to the directional connectivity.
Depending on the sign of the total input sum in Eq. �3� each
unit of the control layer exhibits either the in-phase-locked or
the antiphase-locked synchronous mode globally stable in
the phase space. We now illustrate how the associative
memory based on the force phase-locking effect can be
implemented in an oscillatory network of spiking neurons
with excitatory or inhibitory synaptic architecture.

A. Model description

We consider the two-layer feedforward architecture
shown in Fig. 1 composed of two-variable spiking oscillators
�17� often used for modeling interneuron synchronization
�19�. We take the equations for a unit of the control layer in
the form

��m
dVi

dt
= − Ifast�Vi� − Isyn�Vi,Vk

0� − W;

�w�Vi�
dWi

dt
= W��Vi� − Wi. � �12�

The first equation describes a membrane current balance
equation with Vi and Vk

0 being the membrane potential devia-
tions of the cell and a presynaptic cell from the input layer.
The instantaneous current Ifast�V�=−V+tanh�gfastV� com-
bines the leak current and fast V-dependent inward current. A
slow variable W represents the slow recovery current, with
voltage dependent activation function W��V�=gslowV, �w�V�
= ��2+ ��1−�2� / �1+1/exp�V /k���� is the voltage dependent
time constant of the slow current. It approaches �1��m dur-
ing the active phase �V�0, a slowly activating outward cur-
rent� and �2��m during the silent phase �V�0, a slowly
activating inward current�. Synaptic transmission is instanta-
neous, with a synaptic current given by Isyn=gsynS��Vk

0��Vi

−Vsyn�, where gsyn is the maximal synaptic conductance, Vsyn

is the synaptic reversal potential, and the sigmoid function
S��Vk

0�=1/ �1+1/exp��Vk
0−�syn� /ksyn�. Depending on values

of Vsyn the synaptic transmission can be referred to as exci-
tatory �Vsyn�0� or inhibitory �Vsyn�0�.

B. Force phase-locking modes due to synaptic coupling

Let us consider the dynamics of two cells �12� with uni-
directional synaptic connection. Possible dynamical modes
and locking effects by the synaptic coupling were analyzed
in detail previously �18–20�. Here we are interested in stabi-
lizing the in-phase and antiphase spiking modes for the uni-
directional connection. We defined the spiking phase using
time the difference between postsynaptic and presynaptic
spikes:

��n� =
tpost�n� − tpre�n�

T
, n = 1,2, . . . , �13�

where tpost and tpre are the time moments of a postsynaptic
spike and preceding presynaptic spike, respectively, n is a
digital number of the spikes in the sequence, T is the oscil-
lation period. Using the procedure described in �21� the spik-
ing phase map has been constructed for model �12�. The map
defines the attractors and their basins for the phase variable
�13�. The results are illustrated using the one-parameter bi-
furcation diagram shown in Fig. 5. The points of the graph
indicate the fixed point attractors �stable values of the spik-
ing phase� for different values of Vsyn. It appears that for
inhibitory �Vsyn�0� and for excitatory �Vsyn�0� couplings
there are two regions corresponding to globally stable almost
in-phase- and almost antiphase-locking modes, respectively.
We further use this property to construct the synaptic archi-
tecture for associative memory.

C. Synaptic architecture for associative memory

To implement the two-layer architecture for associative
memory the total synaptic current for an oscillator taken
from the control layer is given by the sum of synaptic cur-
rents from all input layer cells:

-4 -2 0 2
0.0

0.2

0.4

0.6

0.8

1.0
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�
�

[r
a
d
]

Vsyn [arb.units]

Inhibitory

FIG. 5. Spiking phase shift dependence on synaptic reversal
potential for two synaptically coupled neural oscillators �19�. The
dashed rectangle shows the “uncertainty” region where the oscilla-
tions cannot be set in-phase or antiphase. Parameter values: �1=5,
�2=50, k�=0.05, �m=0.16, gfast=2, gslow=2, Iapp=0.6, gsyn=0.1,
�syn=0.0, ksyn=0.2.
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Isyn�Vi� =
1

N
�
j=1

N
gsyn�Vi − Vsyn,ij�

1 + exp��− Vj
0 − �syn�/ksyn�

, �14�

where Vj
0 is the presynaptic potential of the jst cell from the

input layer, Vsyn,ij are the reversal potentials of the interlayer
synaptic contacts. To implement the associative memory we
encode the distribution of the synapses between excitatory
and inhibitory according to the values of the Hebbian matrix
sij, Vsyn,ij =Vs�sij�, so that positive and negative elements of
sij provide the in-phase- and the antiphase-locking modes for
the inhibitory and excitatory synapses, respectively �Fig. 5�.
We take Vs�sij� in a simple linear form, Vs�x�=ax+b. The
coefficients a=−5/2 and b=−3/2 are chosen to set particular
values of the reversal potential, Vsyn,ij =−4 for �i� j = +1 �in-
hibitory synapse→ in-phase mode� and Vsyn,ij = +1 for
�i� j =−1 �excitatory synapse→antiphase mode�.

Let us assume that the input layer contains a binary infor-
mation pattern encoded by using the spiking phase �13�. It is
easy to do, for example, by stimulating each unit of the first
layer by the same periodic stimulus with appropriately dis-
tributed values of the reversal potential, i.e., Vsyn,j

0 =−4 for
�i

0= +1 and Vsyn,j
0 = +1 for �i

0=−1. Such a periodic stimulus
can be taken from an isolated base oscillator described by
Eq. �12�. Its spiking times can be also used to count phase
shift distributions for the layers according to Eq. �13�. Since
each unit of the first layer gets the same synaptic input it
becomes force phase locked relative to the base oscillator
with either in-phase or antiphase spiking �Fig. 6�a��. Then,
for the control layer we can split the synaptic current given
by Eq. �14� on two terms as follows:

Isyn�Vi� =

gsyn�M

N
Vi − a�

k=1

K

�i
k 1

N�
j=1

M

� j
k − b�

1 + exp��− V0+ − �syn�/ksyn�

+

gsyn���N − M�/N�Vi − a�
k=1

K

�i
k 1

N �
j=M

N

� j
k − b�

1 + exp��− V0− − �syn�/ksyn�
.

�15�

The first term is driven by the synchronized signal V0+�t�

corresponding to �i
0= +1 pixels of the input image. The sec-

ond term corresponds to �i
0=−1 pixels and is driven by

V0−�t� that appears almost antiphase relative to V0+�t�. The
two terms tend to synchronize the control layer units with
either in-phase or antiphase spiking depending on the values
of the reversal potentials �Fig. 5�. Then, to estimate the ter-
minal locking mode we can merge the two terms into one
driven by the synchronized signal as follows

Isyn�Vi� �

gsyn�Vi − a�
k=1

K

�i
k 1

N
��

j=1

M

� j
k − �

j=M

N

� j
k� − b	

1 + exp�− V0+ − �syn/ksyn�
,

�16�

with the opposite sign of the sum encoding the reversal po-
tential parameter. Thus we obtain that the phase-locked mode
of the control layer units is defined by the sum

�
k=1

K

�i
k 1

N
��

j=1

M

� j
k − �

j=M

N

� j
k� .

If we assume that positive and negative signs of the sum
provide perfect antiphase and in-phase modes we find that
the retrieved pattern configuration is defined by formula �7�
obtained for the phase model. Accordingly, if the pattern set
satisfies the condition �9� �K=3, Fig. 3� for error-free re-
trieval the system performance relative to each pattern is
determined by the curves shown in Fig. 3�a�. However, the
phase diagram of Fig. 5 defining the locking modes depend-
ing on Vsyn has an “uncertainty” region �marked by the
dashed rectangle�. In this region the in-phase and antiphase
modes cannot be distinguished. There is also bistability when
the phase values depend on initial conditions. The uncer-
tainty interval results in the appearance of dynamical distor-
tions of the retrieved pattern �in addition to the distortions
due to the limited capacity�. These distortions �of order of
1–3 %� are independent of the initial overlap values and are
defined only by the imperfection of the force phase-locking
modes in the uncertainty region. Note, however, that the un-
certainty can be excluded by a nonlinear dependence of the
synaptic reversal potentials on the elements of the connec-
tion matrix, Vs�sij�. For instance, it can be a Heaviside-like
function that maps the matrix values out of this region.

Figure 6 illustrates the sequence of retrieved phase images
obtained for the same conditions for the memorized pattern
set as in Fig. 3. Time evolution of phase variable �13� and
membrane potentials of the units are shown in Fig. 7. Since
the phase response values �Fig. 5� of the synaptic transmis-
sion does not provide the exact in-phase- and antiphase-
locking modes the retrieved phases in model �12� and �14�
do not perfectly coincide �Figs. 7�a� and 7�c��. However,
they apparently form two separate groups or clusters corre-
sponding to a binary distribution. Note also that interunit
spiking time lags inside the in-phase and antiphase clusters
appear to be distributed within a narrow band �Fig. 7�c��.
Moreover, at the time scale of this band the signals sequen-
tially display the distributions corresponding to other infor-
mation patterns memorized in the system �Fig. 8�. It is ex-
plained by fact that the regions of in-phase and antiphase

FIG. 6. Information retrieval in the two-layer network of neural
oscillators. The sequence of snapshots illustrating spiking phase dis-
tribution in the control layer. Gray scale color grade corresponds to
the phase shifts distributed from white �in-phase� to black
�antiphase�. Unit parameters are the same as in Fig. 5, a=−2.5,
b=−1.5.
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locking �Fig. 5� are not perfectly flat but have a finite slope.
Then, the values of sij for each unit encoding the composite
reversal potential according to formula �16� result in slightly
different resulting phases between units. Since these differ-
ences are produced by different values of the Hebbian matrix
that, indeed, contains the information about all memorized
patterns, the spiking model �12� and �14� transforms this in-
formation into different phase lags between spikes. A similar
effect of visual scene segmentation was achieved in the spik-
ing model with global inhibitor �12� where the set of objects
was represented by groups of synchronized oscillators with
definite phase shift. Accordingly, in our model of associative
memory we can treat the phase lags between the memorized
information patterns �“segments of the memory”� as a pos-
sible mechanism of memory segmentation.

IV. CONCLUSION

We have proposed a two-layer oscillatory network for as-
sociative memory capable to store a set of binary patterns
and retrieve one of them if an appropriate stimulus is ap-
plied. The model has a feedforward �heterogeneous� archi-
tecture with the input layer containing a stimulus and the
control �output� layer that retrieves a desired pattern. The
information is encoded using stable in-phase and antiphase
locked modes corresponding to binary patterns. The network
has a directional interlayer connectivity, i.e., the units of the
control layers are stimulated by a composite �converged� sig-
nal from all input layer units. We use the standard Hebbian
rule to define the strengths of this stimulation. The oscilla-
tory units have been modeled by phase oscillators represent-
ing a reduced �phase� description of the Kuramoto network
of weakly coupled oscillators. The dynamics of the control
layer network is defined by the force phase-locking effect
that provides the exact in-phase or antiphase fixed point at-
tractors. The retrieved pattern configuration is given by the
energy �Lyapunov� function. In contrast with homogeneous

oscillatory networks it has just one globally stable minimum
attracting all initial conditions. Its spatial configuration is
defined by the stimulus pattern. Therefore if no stimulus is
applied then the network units evolve independently preserv-
ing an earlier given pattern or without any configuration.
Indeed, the system has no “internal associations” like homo-
geneous networks that internally contain the set of local
minima corresponding to information patterns. In this sense
the term “associative memory” seems to be not quite precise
to define the phenomenon. It is more a stimulus-induced as-
sociative function when the stimulus forces the system to
recall and retrieve the required pattern. Although the model
does not give quite significant improvements in its error-free
capacity it has obvious advantages in its simplicity and dy-
namical robustness. Note that the retrieved function does not
depend on the initial conditions hence the system can be
easily switched from one pattern to another.

Another advantage concerns the possibility to implement
this solution using spiking neuronal oscillators. The spikes
and spiking phases are believed to be the main information
carriers in the nervous system. We have illustrated this pos-
sibility using simple neuronal oscillators with spikes. Due to
the directional connectivity the interlayer interaction has
been organized with excitatory and inhibitory synaptic cur-
rents. The effect of force phase locking yields the associative
information retrieval using relative spiking phase or phase
shifts. Moreover, in contrast with phase oscillators having
time averaged dynamics, the spiking units can provide the
segmentation of the memorized set at a shorter time scale.
This can be also viewed as the translation of information
encoded by synaptic architecture into the true dynamical rep-
resentation using spikes as the information carriers.
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FIG. 7. �a� Time evolution of the spiking phase �13� of the
control layer units forming phase clusters. �b� Time evolution of
membrane potential of the input layer units forming two groups
with perfect in-phase and antiphase spiking. �c� Time evolution of
control layer units. The spikes within the antiphase cluster are dis-
tributed with certain time lags associated with the distortions of the
retrieved image. Parameters are the same as in Fig. 6.
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FIG. 8. Sequence of snapshots of the Vj variables taken within
time distributed antiphase cluster. The system sequentially recalls
the two memorized images �0 and 1� other than the retrieved one at
the very short time scale.
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